If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-40t+20=0
a = 16; b = -40; c = +20;
Δ = b2-4ac
Δ = -402-4·16·20
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{5}}{2*16}=\frac{40-8\sqrt{5}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{5}}{2*16}=\frac{40+8\sqrt{5}}{32} $
| 4x²-3x=-12 | | -102=2(7k-2) | | X+1÷5x=36 | | 2(-7+6n)-2n-10)=24 | | 4(5-7x)=160 | | 3x-4/5=1/3x | | 8x+1=-4x-4 | | x-6/3=x+9/4 | | -(5a-6)=2(3a=8) | | 4(8x-1)=-260 | | 6*h=126 | | 0=16t^2-40t+20 | | 8x+5=349 | | -2|5w-7|=-7-9 | | 4x+2(x+3)=2(x+1) | | 150m-75m+43650=45900-150m | | 15+6m=-5-15m-4m | | -(5a-6)=a | | 4+3x=60 | | 21-g=8*2 | | 2(9+x)=4 | | 16-4x;x=-4 | | -4(x+6)-45=3-52 | | -7-6=3x+5-2x | | 4x^2-3x=-12 | | 8/x=21/14 | | 6/11=z/4 | | 4/3x=|-32| | | 8-4r+2=-6 | | 16-4x;x=4 | | 0=16t^2-32t+20 | | z-22=3(3z+11)-z |